organic compounds

Z = 4

Mo $K\alpha$ radiation

 $0.47 \times 0.45 \times 0.44$ mm

 $\mu = 4.64 \text{ mm}^{-1}$

T = 293 K

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Bromo-1-methylindolin-2-one

Mao-Sen Yuan,* Qi Shuai, Lin Wang, Xiao-Zhou Li and Rui-lin Yu

College of Science, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China Correspondence e-mail: yuanms@nwsuaf.edu.cn

Received 25 May 2009; accepted 6 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.071; data-to-parameter ratio = 18.1.

The title molecule, C₉H₈BrNO, approximates a full planar conformation. The interplanar angle between the benzene and five-membered rings of the indoline system is $1.38 (1)^{\circ}$. There is an obvious π -delocalization involving the N–C=O group in the five-membered ring, which is greater than that involving the $N-C \rightarrow C$ (benzene) group.

Related literature

For the biological activity of indole-2-one derivatives, see: Frohner et al. (2005); Xie et al. (2007). For a related structure, see: Lipkowski et al. (1995).

Experimental

Crystal data C₉H₈BrNO

 $M_r = 226.07$

Monoclinic, $P2_1/c$ a = 10.5134 (4) Å b = 11.0926 (4) Å c = 7.7168 (3) Å $\beta = 103.229 \ (2)^{\circ}$ V = 876.06 (6) Å³

Data collection

Bruker APEXII CCD area-detector	6684 measured reflections
diffractometer	2012 independent reflections
Absorption correction: multi-scan	1655 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.022$
$T_{\min} = 0.122, \ T_{\max} = 0.130$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	111 parameters
$wR(F^2) = 0.071$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
2012 reflections	$\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Scientific Research Foundation of Northwest A&F University (grant No. 2111020828).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2231).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Crvst. 32, 115-119.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Frohner, W., Monse, B., Braxmeier, T. M., Casiraghi, L., Sahagun, H. & Seneci, P. (2005). Org. Lett. 7, 4573-4576.
- Lipkowski, J., Luboradzki, R., Stefaniak, L. & Wojcik, J. (1995). J. Chem. Crystallogr. 25, 299-308.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xie, J., Sun, J., Zhang, G., Houghten, R. A. & Yu, Y. (2007). J. Comb. Chem. 9, 566-568

supplementary materials

Acta Cryst. (2009). E65, o1553 [doi:10.1107/S1600536809021564]

5-Bromo-1-methylindolin-2-one

M.-S. Yuan, Q. Shuai, L. Wang, X.-Z. Li and R.-J. Yu

Comment

Indole-2-one derivatives have been widely explored due to their wide range of biological activities (Frohner *et al.*, 2005; Xie *et al.*, 2007). Indole-2-one may also be used as a precuesor for synthesizing organic lighting compounds because of its perfect planar conformation. In the course of exploring new luminescent compounds, we obtained an intermediate compound 5-bromo-1-methylindolin-2-one (I). Here we report the structure and synthesis of (I).

The molecule lies approximately in a plane (Fig. 1). The interplanar angle between the benzene group and the fivemembered ring is 1.38 (1)° and the maximum displacement from the least-squares plane defined by all the 9 atoms of the indoline framework is 0.057 (3) Å for atom C9. The alternating long and short bond lengths are observed in the benzene ring: C1—C2 = 1.386 (3), C2—C3 = 1.370 (3), C3—C4 = 1.398 (3), C4—C5 = 1.377 (3), C5—C6 = 1.393 (3), C1—C6 = 1.375 (4) Å. The difference among the three C—N bond lengths is obvious, C4—N1 = 1.394 (3), C8—N1 = 1.376 (3), C9—N1 = 1.451 (3) Å, and indicates the presence of an appropriate π delocalization involving the C8—N1 and C8—O1 bonds. The structural conformation of the title molecule (I) is similar to that of 1-methylindolin-2-one (Lipkowski *et al.*, 1995).

The molecules are packed in $P2_1/c$ space group which is different from that of 1-methylindolin-2-one (*Pbca*). There are no classic hydrogen bonds in this structure. However, the weak intermolecular interaction C7—H7B···O1 (2 - x, -y, 1 - z), is helpful to the stabilization of the packing (Fig. 2). This intermolecular hydrogen bond is characterized by the bond lengths of 0.97 (C7—H7B) and 2.51 Å (H7B···O1).

Experimental

1-Methylindolin-2-one (0.50 g) was dissolved in acetonitrile (10 ml). After cooling the mixture to 263 K, an acetonitrile solution of NBS (0.60 g) was slowly added. After stirring for 24 h., the mixture was poured into ice water and further stirred for 1 h. The solution was extracted with chloroform and dried over Na₂SO₄. After removing the solvent, the crude product was purified by recrystallization from ethanol, affording the title compound, (I) (0.58 g, 76%). Then the compound (I) was dissolved in a mixture of solvents, dichloromethane and isopropyl ether, and pink block crystals were formed on slow evaporation at room temperature over one week.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 (aromatic CH), 0.97 (CH₂ groups) or 0.96 Å (CH₃ group). Their isotropic displacement parameters were set to 1.2 times (1.5 times for the methyl group) the equivalent displacement parameter of their parent atoms.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

5-Bromo-1-methylindolin-2-one

Crystal data	
C ₉ H ₈ BrNO	$F_{000} = 448$
$M_r = 226.07$	$D_{\rm x} = 1.714 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2899 reflections
a = 10.5134 (4) Å	$\theta = 2.7 - 27.5^{\circ}$
b = 11.0926 (4) Å	$\mu = 4.64 \text{ mm}^{-1}$
c = 7.7168 (3) Å	<i>T</i> = 293 K
$\beta = 103.229 \ (2)^{\circ}$	Block, pink
V = 876.06 (6) Å ³	$0.47\times0.45\times0.44~mm$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	2012 independent reflections
Radiation source: fine-focus sealed tube	1655 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 293 K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -13 \rightarrow 10$
$T_{\min} = 0.122, \ T_{\max} = 0.130$	$k = -11 \rightarrow 14$
6684 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2

Hydrogen site location: inferred from neighbouring sites

Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.028$	$w = 1/[\sigma^2(F_o^2) + (0.03P)^2 + 0.5204P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.071$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$
2012 reflections	$\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$
111 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0099 (11)

Secondary atom site location: difference Fourier map

											~
Evantional	atomio	acordinator	and	isotuonio	~ 14	aquinalant	isotuonio	dianlacomon	t navamatans	1 84	21
гтасионаі	aiomic	coorainales	ana	isoiropic	or	equivalent	isotropic	uspiacemeni	parameters	(A)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.28547 (2)	0.07936 (3)	0.20946 (4)	0.04945 (13)
C1	0.4602 (2)	0.0991 (2)	0.1860 (3)	0.0355 (5)
C2	0.5537 (2)	0.0170 (2)	0.2694 (3)	0.0374 (5)
H2	0.5316	-0.0460	0.3366	0.045*
C3	0.6793 (2)	0.0308 (2)	0.2506 (3)	0.0329 (5)
C4	0.7111 (2)	0.1265 (2)	0.1505 (3)	0.0316 (5)
C5	0.6183 (2)	0.2080 (2)	0.0666 (3)	0.0400 (6)
Н5	0.6401	0.2710	-0.0006	0.048*
C6	0.4907 (2)	0.1926 (2)	0.0858 (3)	0.0399 (6)
Н6	0.4258	0.2460	0.0306	0.048*
C7	0.8012 (3)	-0.0418 (2)	0.3173 (4)	0.0435 (6)
H7A	0.7903	-0.1238	0.2725	0.052*
H7B	0.8244	-0.0438	0.4464	0.052*
C8	0.9037 (2)	0.0246 (2)	0.2444 (3)	0.0404 (6)
C9	0.9086 (3)	0.2039 (3)	0.0514 (4)	0.0537 (7)
H9A	0.9993	0.1827	0.0715	0.081*
H9B	0.9006	0.2850	0.0908	0.081*
Н9С	0.8688	0.1978	-0.0733	0.081*
N1	0.84354 (19)	0.12225 (19)	0.1502 (3)	0.0360 (4)
01	1.01834 (18)	-0.0009(2)	0.2635 (3)	0.0580 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.03020 (16)	0.0645 (2)	0.05570 (18)	-0.00283 (13)	0.01405 (11)	-0.01295 (13)
C1	0.0260 (11)	0.0432 (15)	0.0375 (11)	-0.0013 (10)	0.0077 (9)	-0.0084 (10)
C2	0.0390 (13)	0.0348 (13)	0.0409 (12)	-0.0030 (11)	0.0142 (10)	0.0002 (10)
C3	0.0326 (12)	0.0315 (12)	0.0343 (11)	-0.0007 (10)	0.0068 (9)	-0.0015 (9)
C4	0.0315 (12)	0.0321 (12)	0.0313 (11)	-0.0028 (10)	0.0076 (9)	-0.0044 (9)
C5	0.0439 (14)	0.0339 (14)	0.0441 (13)	-0.0008 (11)	0.0136 (11)	0.0049 (10)
C6	0.0354 (13)	0.0387 (14)	0.0425 (13)	0.0073 (11)	0.0027 (10)	-0.0004 (11)
C7	0.0353 (14)	0.0452 (15)	0.0499 (14)	0.0056 (11)	0.0098 (11)	0.0097 (12)

supplementary materials

C8	0.0338 (14)	0.0463 (15)	0.0415 (13)	0.0003 (11)	0.0093 (10)	-0.0034 (11)	
C9	0.0457 (16)	0.0552 (18)	0.0667 (18)	-0.0071 (13)	0.0263 (14)	0.0092 (14)	
N1	0.0329 (11)	0.0388 (11)	0.0382 (10)	-0.0035 (9)	0.0121 (8)	0.0001 (9)	
01	0.0322 (11)	0.0747 (15)	0.0686 (12)	0.0084 (10)	0.0147 (9)	0.0060 (11)	
Geometric paran	neters (Å, °)						
Br1—C1		1.900 (2)	С6—Н	6	0.93	00	
C1—C6		1.375 (4)	C7—C3	8	1.515 (4)		
C1—C2		1.386 (3)	С7—Н	7A	0.9700		
C2—C3		1.370 (3)	С7—Н	7B	0.9700		
С2—Н2		0.9300	С8—О	1	1.214 (3)		
C3—C4		1.398 (3)	C8—N	1	1.376 (3)		
С3—С7		1.502 (3)	C9—N	1	1.451 (3)		
C4—C5		1.377 (3)	С9—Н	9A	0.96	00	
C4—N1		1.394 (3)	С9—Н	9B	0.96	00	
C5—C6		1.393 (3)	С9—Н	9C	0.96	00	
С5—Н5		0.9300					
C6—C1—C2		121.7 (2)	C3—C'	7—С8	103.	6 (2)	
C6-C1-Br1		119.70 (18)	C3—C'	7—H7A	111.0)	
C2—C1—Br1		118.56 (18)	C8—C	7—H7A	111.0		
C3—C2—C1		118.4 (2)	C3—C	7—H7B	111.0)	
С3—С2—Н2		120.8	C8—C	7—H7B	111.0		
С1—С2—Н2		120.8	H7A—C7—H7B		109.0		
C2—C3—C4		120.1 (2)	O1—C8—N1		124.9 (2)		
C2—C3—C7		132.2 (2)	O1—C	8—C7	127.8 (3)		
C4—C3—C7		107.7 (2)	N1—C8—C7		107.	4 (2)	
C5-C4-N1		128.4 (2)	N1—C	9—H9A	109.	5	
C5—C4—C3		121.7 (2)	N1—C	9—H9B	109.5		
N1—C4—C3		109.9 (2)	Н9А—	С9—Н9В	109.5		
C4—C5—C6		117.7 (2)	N1—C	9—Н9С	109.5		
С4—С5—Н5		121.1	Н9А—	С9—Н9С	109.5		
С6—С5—Н5		121.1	H9B—	С9—Н9С	109.5		
C1—C6—C5		120.4 (2)	C8—N	1—C4	111.38 (19)		
С1—С6—Н6		119.8	C8—N	1—С9	123.	7 (2)	
С5—С6—Н6		119.8	C4—N	1—С9	124.	8 (2)	
C6-C1-C2-C3	3	0.1 (4)	C2—C3	3—С7—С8	179.2 (3)		
Br1—C1—C2—C	23	179.31 (18)	C4—C3—C7—C8		0.4 (3)		
C1—C2—C3—C4	4	0.6 (3)	C3—C7—C8—O1		-179.9 (3)		
C1—C2—C3—C3	7	-178.2 (2)	C3—C7—C8—N1		0.4 (3)		
C2-C3-C4-C3	5	-0.9 (4)	O1—C8—N1—C4		179.3 (2)		
C7—C3—C4—C3	5	178.1 (2)	C7—C8	8—N1—C4	-1.0 (3)		
C2—C3—C4—N	1	180.0 (2)	01—C	8—N1—C9	4.0 (4)		
C7—C3—C4—N	1	-1.0 (3)	C7—C8	8—N1—C9	-176.2 (2)		
N1—C4—C5—C	6	179.5 (2)	C5—C4	4—N1—C8	-177.7 (2)		
C3—C4—C5—C6	6	0.5 (3)	C3—C4	4—N1—C8	1.3 (3)		
C2-C1-C6-C5	5	-0.5 (4)	C5—C4	4—N1—C9	-2.6 (4)		
Br1—C1—C6—C	25	-179.67 (18)	C3—C4	4—N1—C9	176.	5 (2)	
C4—C5—C6—C	1	0.2 (4)					

Fig. 1

